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Abstract

Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob
disease and other transmissible spongiform encephalopathies, we are still
nowhere close to finding an effective therapy. Numerous pharmacological
interventions have attempted to target various stages of disease progression,
yet none has significantly ameliorated the course of disease. We still lack
a mechanistic understanding of how the prions damage the brain, and this
situation results in a dearth of validated pharmacological targets. In this
review, we discuss the attempts to interfere with the replication of prions and
to enhance their clearance. We also trace some of the possibilities to identify
novel targets that may arise with increasing insights into prion biology.
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PRIONS AND PRION DISEASES

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are caused by the ordered
aggregation of the proteinase K-resistant form of the prion protein, PrPSc, a misfolded version
of the cellular prion protein PrPC. Because similar mechanisms are operative in many other
neurodegenerative and systemic diseases, the protein aggregates causing the latter were termed
prionoids (1, 2). By our definition, prionoids operate similarly to prions at the molecular level but
have not (yet) been shown to be transmissible from one individual to another. In the case of prion
disease, the aggregation is self-sustaining and therefore transmissible between individuals—which
renders TSEs infectious (3–6). These diseases comprise Creutzfeldt-Jakob disease (CJD), kuru,
fatal familial insomnia, and genetic TSEs in humans (7); the latter are caused by mutations in the
PRNP gene encoding PrPC. Neuropathologically, nonspecific signs (astrogliosis, neuronal loss,
and amyloid deposition) are accompanied by spongiform changes: intraneuronal and intraneuritic
vacuoles occasionally containing degenerating organelles (8). The spongiform degeneration of
neurons is highly specific to prion diseases and typically allows for a definitive diagnosis.

The presence of cellular prion protein is necessary not only for the de novo generation of
prions but also for the host organism to experience prion-related neurotoxicity (9). Mice ablated
for PrPC do not acquire the disease after exposure to prions. The availability of PrPC seems to
be rate limiting, as prion-infected mice containing only a single allele of the Prnp gene encoding
PrPC develop the disease much later than wild-type mice.

Prion diseases are rare, with 1.5–2 reported cases per million people per year. Yet they are in-
variably fatal, and currently there is no effective treatment. Identification of any potential antiprion
therapy could also pave the way for treatment of misfolding disorders induced by prionoids. Here
we focus on the therapeutics that in our opinion may have the potential to succeed and on the
challenges awaiting them.

TARGETING PRION CONVERSION

The cellular PrPC is expressed on the plasma membrane, where it is sorted into detergent-resistant
membrane domains (10). The presence of certain mutations may induce PrPC to adopt, through
poorly understood mechanisms, a pathological and ultimately infectious conformation leading
to disease (11). Ordered PrPSc aggregates can seed the nucleation of further prions. PrPSc can
assume a broad variety of compositions ranging from large, insoluble aggregates and plaques to
small oligomers (6).

Polyanionic compounds and amyloidotropic dyes can abrogate the conversion of PrPC to PrPSc

in vitro (12, 13) but could not be translated into therapies owing to toxicity, poor pharmacoki-
netics, and low efficacy (14, 15). Treatment of prion-infected neuroblastoma cells with branched
polyamines resulted in clearance of PrPSc (16). The compounds are protonated at acidic pH and
may act on prion conversion in endosomes and lysosomes (16). However, none of these compounds
had any beneficial effect in vivo.

Dendrimers are synthetic molecules comprised mainly of branched polyamines with modifiable
end groups (17). Phosphorous dendrimers were effective antiprion agents in vitro and cleared
PrPSc significantly, yet they were not developed further (18). Pentosan polysulfate prolonged
the survival of prion-infected mice and was thought to interfere with the conversion of PrPC to
PrPSc but did not have any reproducible effect in prion-affected humans (19, 20). Amantadine,
originally used prophylactically against influenza virus, was suggested to have ameliorated the
clinical course of CJD in a variety of reports, with anecdotal survival times of up to several years
after the first symptoms occurred (21). Other reports, however, failed to reproduce beneficial
effects of amantadine in CJD patients (22, 23). Another antiviral drug, acyclovir, was ineffective
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in two patients suffering from CJD (24, 25), as was interferon in a case series of two patients (26).
Flupirtine, an aminopyridine commonly used as an analgesic, was used in a placebo-controlled,
double-blind study that suggested amelioration of cognitive deficits in sporadic CJD (sCJD) and
genetic CJD despite unchanged survival times (27).

Quinacrine is an antiprotozoal drug that was introduced in the 1930s as an antimalarial agent,
and during the variant CJD (vCJD) epidemic at the turn of the new millennium, the lack of efficient
antiprion compounds compelled researchers to recruit patients for clinical studies (28). An open
compassionate-use trial of quinacrine in 30 sCJD and two vCJD patients did not significantly
prolong their survival or ameliorate the functional impairments and did not show beneficial effects
on brain pathology (29). PRION-1, a prospective, patient-preference trial of quinacrine, also failed
to significantly prolong the survival or improve cognitive deficits in the 107 patients enrolled (30).
The study conductors hypothesized that low levels of the drug in the cerebrospinal fluid might
have been responsible for the failure to reach clinical endpoints, although application of the drug
showed an overall acceptable safety profile (30). Because compassionate-use trials cannot detect
small effects of a molecule owing to the lack of a placebo arm, a randomized, double-blind, placebo-
controlled trial of quinacrine in sCJD patients was performed thereafter (31). Fifty-one patients
were eventually included for functional and survival analyses. Although patients in the quinacrine
arm performed slightly better in terms of functional scores during the early treatment course, no
survival benefit was observed upon quinacrine administration, leading to its elimination as a prion
disease therapeutic (31).

We have reported the generation of reactive oxygen species to be a downstream effector of
prion-induced neurotoxicity, and administration of antioxidants such as acetylated hydroxytyrosol
effectively extended the survival of prion-diseased mice. One case report suggested beneficial
effects of neurological disease in a CJD patient who received a complex mixture of antioxidants,
including vitamin E and alpha lipoic acid, although he succumbed to disease 22 months after onset
of symptoms (32).

A pilot compassionate-use trial of doxycycline showed beneficial effects on patient survival
independent of age, gender, and codon 129 polymorphism of the PRNP gene (33). In a first-of-
its-kind, multicentric, prospective, placebo-controlled, randomized, Phase II study, doxycycline
did not show superiority in the first interim analysis when compared to placebo, and the study was
stopped (34). Although the latter study provided class 1 evidence that doxycycline does not extend
survival in prion disease patients, a subsequently published case report suggested an unusually long
survival time (>5 years) of a patient suffering from variably protease-sensitive prionopathy who was
treated with doxycycline (35). These reports indicate the helplessness of clinicians who prescribe
antiprion drugs despite their proven lack of efficiency. Compound B, IND24, and anle138b were
among other compounds that showed no effect against human prions (34).

These disappointing results raise questions on the viability of strategies to identify prion ther-
apeutics. In particular, it has become evident that cell culture models are poorly predictive of
effectiveness in vivo. A plausible reason lies in the fact that it is generally difficult to maintain
prion infectivity in immortalized, continuously growing cells. For such cultured cells to remain
chronically infected with prions, replication would have to be at least as rapid as cell division:
A negative differential would inevitably result in loss of infectivity over time. In addition, prion
replication may impose a fitness cost on infected cells, resulting in noninfected cells (which may
arise because of inhomogeneously infected cultures or acquired resistance) overgrowing the sys-
tem (36). These characteristics lead us to predict that infected cell cultures are inherently unstable
systems—a prediction verified experimentally by the observation that most chronically infected
cell lines spontaneously gravitate toward lower infectivity titers over time (unpublished observa-
tions by members of the Aguzzi lab). One could therefore argue that the crucial issue with N2A
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cells is not how to cure them but rather how to maintain them in an infected state. In this interpre-
tative frame, it is not surprising that agents capable of curing cultured cells almost always prove
entirely ineffective when tested in vivo, where brain-resident cells undergo much slower turnover
rates and spontaneous resistance has hardly any chance to develop (Table 1).

Cerebellar organotypic cultured slices (COCS) seem to represent a more realistic system for
testing antiprion compounds and are indeed garnering a much better record than N2A cells
in predicting in vivo antiprion efficacy (37–42). The main disadvantage of COCS over N2A
cells, however, is the laboriousness of their production, which precludes their feasibility for high-
throughput screens. Instead, COCS are best suited as secondary screens for intermediate validation
of compounds identified in vitro.

One key consideration in designing an effective therapeutic option is to consider the frangibility
(i.e., the propensity to break) of the pathological protein aggregates. Prion aggregate frangibility
is the most important parameter in determining prion infectivity; these predictions from first
principles were largely confirmed in animal models (40). By using β-sheet-breaking compounds
that convert large aggregates into many small oligomers, one might inadvertently create more
propagons (43). It follows that maybe an effective therapy should aspire not to break down PrPSc

aggregates but rather to hyperstabilize said aggregates (Figure 1). Luminescent conjugated poly-
thiophenes (LCPs) appear to act as such prion hyperstabilizers. LCPs bind to cross-β spines in
PrPSc (44, 45). LCPs can detect PrPSc aggregates with great sensitivity, and their emission spectra
can differentiate between different amyloids (45) and prion strains (46).

LCPs reduce prion infectivity in samples containing prion aggregates from brains of infected
mice (47). The binding of the LCPs to amyloid fibrils was resolved at the atomic level and
was found to rely on cooperative electrostatic interactions. However, digestion with proteinase
K, which is a proxy for fibril stability, was enhanced by LCPs, whereas infectivity of the same
prion preparation was decreased dose dependently (47). These observations are consistent with
the hypothesis that LCPs indeed decrease the infectivity of prions by hyperstabilizing PrPSc

aggregates. The structural elucidation of the interaction between LCPs and amyloid allowed
us to design new LCPs with stronger binding. These showed higher efficacy in prolonging the
survival of prion-infected mice (48).

TARGETING CELLULAR PATHWAYS FOR PRION THERAPY

The ubiquitin-proteasome system (UPS) maintains quality control in cells by degrading misfolded
or damaged proteins (49). Early studies revealed the presence of ubiquitin within protein aggre-
gates (50, 51). An elevated level of ubiquitinated proteins in the brains of prion-infected mice is
associated with a dysfunctional UPS (52), which may contribute to neurotoxicity. PrPSc can bind
to the external leaflet of the 20S proteasomal subunit and may impair its function (53). Other
studies have postulated that prion oligomers inhibit the catalytic B subunit or prevent substrate
entry into the proteolytic core (54). These hypotheses may explain the failure of proteasomes in
prion infections (52, 55), but it is difficult to conceive how PrP, which resides in the lumen of the
endoplasmic reticulum (ER) and in the extracellular space, could be driven to encounter protea-
somes in the cytosol. The idea that PrP undergoes conspicuous ER-associated protein degradation
(ERAD) is plausible (56, 57) but has been challenged (45).

Inhibition of ubiquitin carboxy-terminal hydrolase 14 (USP14), a deubiquitinase attached to the
19S proteasome subunit, results in clearance of aggregation-prone proteins (58). A small molecule
targeting USP14 accelerates the degradation of proteins associated with neurodegenerative dis-
eases, such as TDP43, tau, and ataxin. An as-yet-unexplored strategy targeting misfolded proteins
in neurodegenerative diseases is the generation of small-molecule compounds, which direct the
endogenous E3 ubiquitin ligases to their substrates. PROTACs (proteolysis-targeting chimeric

334 Aguzzi · Lakkaraju · Frontzek

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

8.
58

:3
31

-3
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ita

 D
eg

li 
St

ud
i D

i V
er

on
a 

on
 1

1/
27

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PA58CH18-Aguzzi ARI 14 November 2017 16:59

Table 1 Chemical compounds targeting prion disease

Compound name
or class

Disease model and inoculation
route

Administration
route Author conclusion Reference

6-OHDA i.p. and i.c. inoculation of mice
with RML4.1

i.p. Significant prolongation of
incubation times through
sympathectomy

146

Amantadine Human patients suffering from
CJD (ns, n = 4)

Oral EEG changes in 2/4 treated
patients, transient
amelioration of neurological
symptoms, no differences in
survival

21

Astemizole RML- or 22L-infected PK1 cells,
i.c. inoculation of mice with RML

Addition to cell
culture medium, i.p.

Inhibition of prion replication,
prolonged survival in mice

88

Congo red i.p. and i.c. inoculation of hamsters
with 263K and 139H (i.c. only)

i.p. Delay of mean incubation
period in scrapie-inoculated
hamsters

14

i.c. and i.p. inoculation of hamsters
with 263K

Subcutaneous, i.c. Prolonged survival time of
scrapie-inoculated hamsters

15

Dendrimers 22L-infected N2A cells, i.p.
inoculation of mice with C506M3

Addition to cell
culture medium, i.p.

Clearance of PrPSc in
scrapie-infected cells and
reduction of infectivity in mice
spleens

17

DMSO Scrapie-infected N2A cells Addition to cell
culture medium

Interference with PrPSc

formation
96

Doxycycline Human patients diagnosed with
probable CJD (n = 21)

Oral Significantly prolonged survival
of doxycycline-treated patients
compared to untreated
controls

33

Human patients suffering from
sCJD (n = 114), iCJD (n = 2),
vCJD (n = 1), and gCJD (n = 4)

Oral No significant differences in
terms of survival times or
neuropathological changes

34

Flupirtine Human patients suffering from
sCJD (n = 12) and gCJD (n = 2)

Oral Significantly less deterioration
in dementia tests, no
differences in survival

27

Glycerol,
TMAO

Scrapie-infected N2A cells Addition to cell
culture medium

Interference with PrPSc

formation
96

GSK2606414 i.c. inoculation of mice with RML Oral gavage Abrogation of clinical prion
disease in mice

73

Imatinib Chronically 22L-infected N2A
cells, i.p. inoculation of mice with
RML5

Addition to cell
culture medium, i.p.

Clearance of PrPSc, prolonged
survival

92

LCPs SCEPA, MPA, RML6-infected
COCS

Addition to cell or
slice culture
medium

Reduction of PrPSc through
hyperstabilization of
aggregates

47

i.c. inoculation of mice with RML6 Intraventricular Prolonged incubation period
through hyperstabilization of
PrPSc aggregates

48

Lithium Persistently RML-infected N2A
cells

Addition to cell
culture medium

Clearance of PrPSc 87

(Continued )
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Table 1 (Continued )

Compound name
or class

Disease model and inoculation
route

Administration
route Author conclusion Reference

Pentosan
polysulfate

i.c. inoculation of mice with 263K,
RML, and Fukuoka-1

Intraventricular Prolongation of incubation
time in scrapie-infected mice

19

Neuropathological workup of
brains from human patients
suffering from iCJD (n = 1),
sCJD (n = 2), and GSS (n = 1)
from Reference 161

Intraventricular Uncertain therapeutic effects of
pentosan polysulfate infusions

20

Polyamines Scrapie-infected N2A cells,
incubation with brain
homogenates from
scrapie-infected mice

Addition to cell
culture medium,
co-incubation with
brain homogenate

Clearance of PrPSc, probably
due to interference with prion
propagation in endosomes and
lysosomes

16

Quinacrine Human patients suffering from
sCJD (n = 30) and vCJD (n = 2)

Oral No differences in functional
status, brain lesions, or survival

29

Human patients suffering from
iCJD (n = 2), sCJD (n = 45),
vCJD (n = 18), and gPrD (ns,
n = 42)

Oral 10% of patients taking
quinacrine had transient
amelioration of neurological
symptoms, no differences in
survival

30

Human patients suffering from
sCJD (n = 51)

Oral Quinacrine-treated patients
deteriorated less on 2/3
functional rating scales, no
differences in survival

31

Rapamycin Tg(PrP-A116V) mouse model of
GSS

i.p. Extended survival in
rapamycin-treated mice

89

STI571 Scrapie-infected N2A cells Addition to cell
culture medium

Clearance of PrPSc 85

Tacrolimus RML- or 22L-infected PK1 cells,
i.c. inoculation of mice with RML

Addition to cell
culture medium, i.p.

Inhibition of prion replication,
no prolonged survival in mice

88

Trehalose Chronically 22L-infected N2A
cells

Addition to cell
culture medium

Decrease of newly synthesized
PrPSc particles

91

Abbreviations: 6-OHDA, 6-hydroxydopamine; CJD, Creutzfeldt-Jakob disease; COCS, cerebellar organotypic cultured slices; DMSO, dimethyl sulfoxide;
EEG, electroencephalogram; gCJD, genetic CJD; gPrD, genetic prion disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; i.c., intracerebral; iCJD,
iatrogenic CJD; i.p., intraperitoneal; LCP, luminescent conjugated polythiophene; ns, not specified; MPA, misfolded protein assay; PrPSc, proteinase
K-resistant form of the prion protein; RMLX, xth passage of the Rocky Mountain Laboratory prion strain; SCEPA, scrapie cell endpoint assay; sCJD,
sporadic CJD; TMAO, trimethylamine N-oxide; vCJD, variant CJD.

molecules) consist of a peptide that recognizes a specific ubiquitin ligase chemically linked to a
small molecule that recognizes the target protein (59). Once bound to the target protein, it creates
spatial proximity between the substrate and ubiquitin ligase, promoting polyubiquitination and
enhanced degradation of the target substrate. Researchers carried out extensive studies to char-
acterize PROTACs for cancer treatment (60) and determined they can perhaps be used to target
misfolded prions. A new strategy involves a combination of chaperone proteins and small-molecule
compounds. The small molecule acts as a guide to the substrate, whereas the chaperone engages
with the misfolded proteins and renders them amenable to proteasomal degradation (61). Such a
strategy was implemented in spinal-bulbar muscular atrophy and amyotrophic lateral sclerosis (62).
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Lysosome

Early endosome

PrPSc aggregates

Autophagosome

ERAD?

ER

Golgi
   apparatus

Proteasome Cytosolic PrPSc

Chaperones

Compounds targeting
prion replication

PrPSc

Prion hyperstabilizers (LCPs)

Enhance
autophagy

Enhance
UPS

Enhance
lysosomal
function

Chaperone
therapy

Antibody
therapy

?

?

PrPC

Figure 1
Upon encountering a prion propagon, the cellular PrPC is converted and incorporated into PrPSc. The conversion of PrPC to PrPSc

probably begins on the plasma membrane and continues throughout the endocytic pathway. PrP aggregates have also been observed in
the cytoplasm and may originate through ERAD, leakage from defective endosomes and lysosomes, or both. Potential therapeutic
points of intervention include prion clearance (antibody therapy) and prion replication, including hyperstabilization of aggregates.
Intracellular targets include enhancers of autophagy and of lysosomal function, as well as modulators of the UPS and chemical
chaperones. Abbreviations: ERAD, endoplasmic reticulum–associated protein degradation; PrPC, cellular prion protein; PrPSc,
proteinase K-resistant form of the prion protein; UPS, ubiquitin-proteasome system.

TARGETING THE UNFOLDED PROTEIN RESPONSE

A common event in protein misfolding disorders is the upregulation of the unfolded protein
response (UPR), also referred to as ER stress (63). Over 30% of all cellular proteins traverse the
ER before being modified and disseminated to their final destinations. The ER controls a complex
set of cellular processes by which proteins are synthesized, folded, and posttranslationally modified
(64). Disturbances in the function of the ER may lead to the accumulation of misfolded proteins
or alteration in calcium homeostasis, resulting in the induction of stress.

UPR can restore cellular proteostasis by shutting down global translation and thereby reduce
the load of misfolded proteins in the ER (65). Also, UPR enhances the synthesis of chaperones
and other proteins that assist in protein folding to repair the misfolded proteins in the ER (66).
The misfolded ER proteins can be retrotranslocated to the cytosol, where they are degraded by
the ERAD pathway (67). The major transducers of UPR are protein kinase RNA-like ER kinase
(PERK), inositol-requiring enzyme-1 (IRE1), and activating transcription factor-6 (ATF6). PERK
is a transmembrane protein essential for the attenuation of the translation by phosphorylation of
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the eukaryotic translation initiation factor (eIF2α), whereas IRE1 and ATF6 are mainly involved
in the synthesis of chaperones necessary for protein folding (68).

Elevated levels of the ER chaperones GRP94, GRP78, and GRP54 were observed in prion-
infected humans and mice (69). Prion infection disrupts calcium homeostasis in the cell, affecting
the ER; cells exposed to purified PrPSc displayed activation of UPR and calcium release from the
ER, along with upregulation of chaperones identified in CJD patients (70). Furthermore, there
exists a complex interplay between UPS and ER stress, and it is widely believed that inhibition of
proteasomal function elicits UPR (71).

Prion-infected mice show sustained activation of PERK and phosphorylation of eIF2α, re-
sulting in downregulation of global protein translation through eIF2α phosphorylation (72, 73),
which leads to decreased synaptic proteins and neuronal death. Overexpression of the eIF2α-
specific phosphatase GADD34 rescues synaptic defects and neuronal loss, at least for a while (73).
Pharmacological inhibition of PERK restores translation and provides some neuroprotection (73).
The integrated stress response inhibitor B, which targets the translational inhibition downstream
of eIF2α, was also shown to ameliorate prion pathology (74).

In contrast to PERK inhibitors, guanabenz and its derivative sephin 1 prevented neurodegener-
ation in a mouse amyotrophic lateral sclerosis model by interfering with GADD34 and enhancing
the phosphorylated status of eIF2α (75). This long-term translational arrest may prevent synthesis
of new propagons and thereby provide neuroprotection. Guanabenz has previously been shown
to enhance prion clearance (76), yet severe side effects have restricted its use so far. This problem
illustrates the basic conundrum of UPR-based therapies: The process of interfering with a general
control mechanism of translation is inevitably ridden with deleterious, unintended consequences
(Figure 1).

TARGETING LYSOSOMAL DEGRADATION AND AUTOPHAGY

The conversion of PrPC to PrPSc occurs at the plasma membrane (77) and in the endocytic
pathway, including through the recycling of endosomes and multivesicular bodies (78, 79). The
accumulation of misfolded prions in the endocytic compartments may alter the composition of
the vesicular compartments and their functioning. Lysosomes are the major sites for degradation
of cellular PrPC, and PrPSc can accumulate in lysosomes (80). In cell cultures, PrPSc can be cleared
by lysosomes; however, other defects arising in the endolysosomal machinery and PrPSc overload
may ultimately render lysosomes nonfunctional. Indeed, prion infection results in reduced levels
of membrane-bound rab7, affecting the maturation of lysosomes and their capacity to degrade
proteins (81).

Another key delivery route of PrPSc to lysosomes for degradation is autophagy (82). In au-
tophagy, the cytosolic constituents are engulfed by a double-membrane structure, the autophago-
some, which fuses with lysosomes releasing their contents for degradation. Giant multivesicular
bodies and autophagic vesicles (AVs) are observed in neurons of prion-infected mice, in prion-
infected cell cultures, and in genetic prion models (83). Autophagy may play a protective role by
scooping up aggregates and delivering them for degradation. Researchers originally believed that
spongiform vacuoles observed in prion diseases are AVs, yet these vacuoles do not have the mem-
brane characteristics of AVs, nor do they display any autophagy markers. Impairing autophagy
pharmacologically or by siRNA inhibits the capacity of cells to degrade PrPSc (84). Hence, promot-
ers of autophagy and lysosomal degradation could be therapeutic against prions (85, 86). Lithium
has been shown to enhance the clearance of PrPSc in cultured cell lines by inducing autophagy
(87) and reduces cellular PrPC levels slightly. Rapamycin and tacrolimus, which also promote
autophagy, showed similar results (88, 89).
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Trehalose is an alpha-linked disaccharide synthesized by fungi and plants to protect them
against environmental stress conditions by preventing protein denaturation. In cell culture, tre-
halose induces autophagy and may improve the clearance of misfolded proteins (90). PrPSc from
prion-infected cell cultures was cleared rapidly by treatment with trehalose (91). Similarly, ima-
tinib, another autophagy-promoting compound, abolished PrPSc levels in cell cultures (92).

CHAPERONE THERAPY

Molecular chaperones interact with other proteins and assist them in attaining a stable conforma-
tion. They represent an important quality control system that prevents misfolding and aggregation.
In yeast, the heat shock protein 104 (Hsp104) disaggregase can solubilize cytosolic aggregates of
Sup35, the yeast prion � (93). Researchers identified a triad of Hsp110/70/40 as a mammalian
minimal disaggregase (94). Upregulation of Hsp70 alone afforded neuroprotection in model sys-
tems (95). However, it is unclear whether this triad could be exploited therapeutically against
prion diseases.

Chemical chaperones are small molecules that bind to proteins and restore their function
by refolding them and letting them attain a stable structure. In spite of their nonspecific mode
of action and low affinity, their ability to eliminate protein aggregates makes them attractive as
therapeutics. Methylamines and glycerol have been effective in blocking the conversion of PrPC

to PrPSc in cell culture models (96). Anthracyclines, porphyrins, and diazo dyes were also effective
in blocking prion replication in the in vitro assays (97), yet in vivo results were discouraging.

ACTIVE IMMUNOTHERAPY AGAINST PRION DISEASE

Immunization strategies have shown promise in various protein misfolding disorders (98). Active
immunization against prions is hindered by the widespread expression of the cellular prion protein
PrPC in the body, leading to self-tolerance. Immunization with small prion fragments designed
to fit into known grooves of major histocompatibility complex class II binding pockets elicited
anti-PrPC immunity, and antibodies derived thereof reduced proteinase K–resistant PrPSc levels
in a prion-infected tumor transplant (99). Active immunization of mice with recombinant prion
protein delayed prion disease when the immunogen was administered prophylactically and, to a
lesser extent, when animals were already infected (100). Clinical disease induced through orally
administered prions was attenuated after vaccination of mice (101, 102) and deer (103). However,
another report failed to show differences in disease susceptibility through prophylactic prion
vaccination in deer suffering from chronic wasting disease, a prion disease of deer and elk (104). A
modest disease delay was achieved after immunization with recombinant prion protein fragments
and intraperitoneal prion inoculation (105, 106). Attempts to break self-tolerance using a combined
DNA and protein vaccination regime yielded mixed results (107, 108).

Because the immune system is tolerant to self-antigens, antibodies derived from immuniza-
tions often lack the affinity needed for effective therapy. Addressing the molecular whereabouts
of PrPC self-tolerance, one study found that even small amounts of extraneuronal PrPC abolished
an efficient immune response (109). A delay in disease onset was achieved by Freund’s adjuvant,
suggesting a benefit through an unspecific activation of the immune system (110). Another study
suggested a strongly neuroprotective effect through post hoc immunostimulation against prions
using repetitive administration of CpG oligodeoxynucleotides (CpG-ODNs) that are suggested
to stimulate innate immunity (111). A chronic CpG-ODN treatment, however, was shown to in-
duce profound immunosuppression with lymphoid follicle destruction, hepatotoxicity, and hem-
orrhagic ascites (112). Moreover, repetitive immunization of mice increases their susceptibility to
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peripherally induced prion disease through reduced prion clearance, reduced size of follicular den-
dritic cell (FDC) networks, or both, suggesting that individual immune states (e.g., hyperactivated
or depressed) may predispose mice to prion disease vulnerability (113).

PASSIVE IMMUNOTHERAPY AGAINST THE PRION PROTEIN

The first proof of concept for prion immunotherapy demonstrated a reduction in prion infectiv-
ity through exposure of cell-free, purified prions with PrP-specific antisera (114). Passive prion
immunotherapy through diminishing PrPSc levels in vitro was exhibited when the monoclonal anti-
PrP antibodies 6H4, SAF32, and SAF61 or Fab-fragments of the PrP-specific antibodies D13,
D18, R1, and R2 were given to chronically prion-infected N2A neuroblastoma cells (115–118) (for
a complete list of antibodies tested, see Table 2). When D13 was given as a bivalent antibody (D13-
IgG), widespread neuronal apoptosis was observed, suggesting neuronal death occurred through
cross-linking of PrPC, a finding that was not seen with the holo-IgG molecule of D18 (119). When
a single-chain fragment of D18 was engineered into the adeno-associated virus 9 vector and trans-
duced into Rocky Mountain Laboratory–infected mice brains, prolonged survival of inoculated
mice was observed (120). The toxic effects of D13 were reproduced in a second study (41).

Transgenic overexpression of an IgMa μ chain of the anti-PrP antibody 6H4 reduced prion
infectivity and levels of PrPSc in prion-infected mice (121), and peripheral injections with the
monoclonal anti-PrP antibodies 8B4, 8H4, and 8F9 led to a decrease in clinical disease onset (122),
as did injections with the PrP-α1 helix targeting antibody 31C6 (123). 31C6 was reported to be
protective against prion disease when given as late as when clinical signs had already manifested,
albeit through intraventricular application (124).

The safety profile of the anti-PrP antibodies ICSM18 and ICSM35 is highly controversial
(125). One report found no drug-related toxicity of both compounds after stereotaxic injections of
2 μg of antibody in mice (126). However, in a dose-escalation study with ICSM18, the allegedly
safe dosage of 2 μg of antibody showed drug-attributable neurotoxic effects, raising concerns about
the suitability of ICSM18 in clinical trials (127). Of note, POM1, a monoclonal antibody directed
against a similar epitope as ICSM18, shows severe neurotoxicity ex vivo and in vivo (39, 41, 128,
129).

Human autoantibodies recognizing the mutant prion fragment PrPA117V
106–126 from commer-

cially available, pooled immunoglobulins were proposed to be protective against PrPA117V
106–126-

induced neuronal death in vitro through microglial uptake of the mutated fragment (130, 131).
However, PrPA117V

106–126 does not exist in nature, and therefore such speculations are implausible.
Encouraging neuroprotection after prion challenge was obtained with monoclonal antibodies

targeting the epitopes in octapeptide repeat domain (OR) of the prion protein. PrPSc formation
was inhibited in N2A cells by two such anti-OR antibodies, mab110 and SAF34. More recently
POM2, a high-affinity monoclonal antibody targeting the OR, conferred protection against prion
infection in COCS (Figure 2) (41). Although prion titers were not affected, downstream cytotoxic
events downstream of prion replication were selectively suppressed (39). Interestingly, however,
anti-PrPC-OR antibody 4H11 did not ameliorate the prion disease in mice, although it had been
shown to clear PrPSc in cell culture experiments (132). Instead, 4H11-injected animals showed
behavioral deficits and heightened neuronal loss and astrogliosis (132). It will be important to
understand the differences between 4H11 and other anti-OR antibodies in order to understand
why 4H11 antibody treatment failed to confer protection whereas intracerebral injections of the
anti-OR antibody POM2 did not elicit toxicity (127).

4H11 was raised against an artificial murine PrP dimer that was hypothesized to represent a
misfolded intermediate during the pathological conversion between PrPC and PrPSc (132) while

340 Aguzzi · Lakkaraju · Frontzek

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

8.
58

:3
31

-3
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ita

 D
eg

li 
St

ud
i D

i V
er

on
a 

on
 1

1/
27

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PA58CH18-Aguzzi ARI 14 November 2017 16:59

Table 2 Therapeutic antibodies against PrP ex vivo and in vivo

Clone
Epitope
region

Prion
inoculation

Administration
route

Assessment of
toxicity and
protection Results Reference(s)

6H4 α1 RML5, i.p. Transgenic
expression of
μ chain

Mouse bioassay No transgene-expressing
animal succumbed to the
disease

121

D13 CC2 NA Stereotactic
injection

Histology Innocuous at 1 μg, toxic at
2 μg

119

Stereotactic
injection

Histology Innocuous at up to 2 μg 126

Stereotactic
injection

Histology,
MEMRI

Toxic at 6 μg 41

Stereotactic
injection

Histology,
MEMRI

Innocuous at 2 μg, toxic at
6 μg; estimated upper limit
of safe dose: 3.7–5.4 μg

127

D18 End of
HC–α1

NA Stereotactic
injection

Histology Innocuous at 2 μg 119

NA Stereotactic
injection

Histology Innocuous at up to 2 μg 126

RML (ns),
i.p.

AAV9 Survival Disease delay in inoculated
animals receiving the
AAV9-mediated antibody

120

8B4 Between CC1
and OR

139A, i.p. i.p. Survival Significant disease delay 122

8H4 α2

8F9 α3 and
beginning of
GPI

ICSM18 α1–3 RML (ns) i.p. Survival, PrPSc

levels
Extended survival in i.p. but
not i.c. inoculated mice
treated with ICSM18,
decreased levels of PrPSc

125

NA Stereotactic
injection

Histology Innocuous at up to 2 μg 126

NA Stereotactic
injection

Histology,
MEMRI

Innocuous at 2 μg, toxic at
6 μg; estimated upper limit
of safe dose: 3.1 μg

127

ICSM35 End of
OR–CC2

RML (ns) i.p. Survival, PrPSc

levels
Extended survival in i.p. but
not i.c. inoculated mice
treated with ICSM18,
decreased levels of PrPSc

125

NA Stereotactic
injection

Histology Innocuous at up to 2 μg 126

(Continued )
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Table 2 (Continued )

Clone
Epitope
region

Prion
inoculation

Administration
route

Assessment of
toxicity and
protection Results Reference(s)

31C6 α1 Obihiro,
Chandler

Intraventricular Survival,
histology,
PrPSc levels

Extended survival when given
shortly after inoculation and
when clinical symptoms
were present

124

Chandler Intravenous Extended survival of
prion-infected, 31C6-treated
mice

123

4H11 OR 6PB1 Intraventricular Survival,
histology,
behavior

No prolonged survival of
4H11 in prion-infected
mice, 4H11 induced
behavioral deficits and
neuronal loss

132

POM1 α1–3 NA Stereotactic
injection

Histology,
MEMRI

Severe neurotoxicity 41

COCS Biochemistry,
microarray

Induction of toxic pathways
similar to bona fide prions

38, 39

COCS, i.c. Survival,
histology,
PrPSc levels

No generation of infectivity 129

POM2 OR NA Stereotactic
injection

Histology,
MEMRI

Innocuous at up to 2 μg of
scFvPOM2 (molar
equivalent to 12 μg
holo-IgG)

41

RML6 COCS Histology,
PrPSc levels

Neuroprotection by POM2 in
prion-infected COCS

38, 39

Abbreviations: α1–3, alpha-helices 1–3 of PrP; AAV9, adeno-associated virus 9; CC1/2, charged cluster 1/2 of PrP; COCS, cerebellar organotypic
cultured slices; GPI, glycosylphosphatidylinositol; HC, hydrophobic core of PrP; i.c., intracerebral; i.p., intraperitoneal; MEMRI, manganese-enhanced
magnetic resonance imaging; NA, not applicable; ns, not specified; OR, octapeptide repeat of PrP; PrP, prion protein; PrPSc, proteinase K-resistant form
of the prion protein; RMLX, xth passage of the Rocky Mountain Laboratory prion strain.

POM2 was raised from immunization of PrPC knock-out mice (133). One possible explanation
for the discrepancy between the two OR-binding antibodies might be off-target effects of 4H11
due to immunization with a nonnatural protein.

TARGETING THE PERIPHERAL REPLICATION
AND NEUROINVASION OF PRIONS

Genetic blockade of B cell maturation ablated the onset of prion disease after peripheral prion
inoculation (134). In light of these findings, one might speculate that pharmacological ablation of
B cells (e.g., through the anti-CD20 antibody rituximab) could afford postexposure prophylaxis.
Initial prion accumulation occurs in secondary lymphoid organs prior to neuroinvasion (135),
whereas other prion strains—so-called neurotropic prions—can primarily invade the central ner-
vous system without the need for peripheral replication (136). Early studies have argued for the

342 Aguzzi · Lakkaraju · Frontzek

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

8.
58

:3
31

-3
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ita

 D
eg

li 
St

ud
i D

i V
er

on
a 

on
 1

1/
27

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PA58CH18-Aguzzi ARI 14 November 2017 16:59

QPHGGGWGQPHGGGWG QPHGGGWGQPHGGGW

POM2 POM2
POM2

POM2

Octapeptides

Chain AChain B

Flexible tail

Globular domain

OctapeptideOctapeptide

Figure 2
Immunotherapy is quickly evolving as an attractive therapeutic strategy against prion disease. The
monoclonal antibody POM2 binds to a degenerate epitope in the octapeptide repeat region of PrPC and
protects against prion-induced neurodegeneration. The red dots indicate the N terminus of prion protein,
also called the flexible tail, which is intrinsically disordered. The ordered globular domain of PrPC is
represented in magenta. The interaction between an F(ab)1 fragment of the POM2 antibody (cyan and gray)
and its cognate epitope on PrPC (purple) is visualized in the inset. Blue lines indicate the interactions.
Abbreviation: PrPC, cellular prion protein.

requirement of mature PrPC-expressing FDCs for prion neuroinvasion: Ablation of differenti-
ated B cells prevented peripheral scrapie pathogenesis due to the lack of FDC maturation signals
secreted by B cells (134), and mice lacking either expression of PrPC on mature FDCs or ma-
ture FDCs did not succumb to peripherally initiated prion disease (137). As FDCs depend on
lymphotoxins and tumor necrosis factor (TNF) from B cells for development and maintenance,
they provide an opportunity to target prion replication (138). Administration of a hybrid protein
consisting of lymphotoxin β receptor and human immunoglobulin (LTβR-Ig) dedifferentiated
FDCs through inhibition of the lymphotoxin α/β pathway and led to a delay of prion disease upon
peripheral inoculation (139), even when LTβR-Ig was given late during the disease course—but
not upon intracerebral inoculation (140). Dedifferentiation of FDCs through a single injection of
soluble human TNF receptor linked to the Fc portion of human immunoglobulin IgG1 also led
to decreased disease susceptibility to peripherally administered prions (141).

FDCs trap immune complexes by binding to Fcγ receptors. They also bind opsonized anti-
gens via the complement receptors CD21/CD35. Pharmacological and genetic ablation of the
complement factor C3 or its receptor CD21/CD35 prolonged incubation times in peripherally
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prion-inoculated mice (142, 143). Hence, complement activation through PrPSc may lead to
more FDC-bound PrPSc and favor prion replication. Neither membrane-bound nor secreted im-
munoglobulins altered prion neuroinvasion (143). Circulating immune complexes bound to PrPSc

may not play a role in prion pathology because deletion mutants of a variety of Fcγ receptors had
no effect on prion incubation times (143).

The sympathetic nervous system (SNS) innervates secondary lymphoid organs, and experi-
mental evidence has pointed to an involvement of the SNS in prion pathogenesis, as splanchnic
nerves are an early replication site after peripheral prion inoculation (144) and prions accumulate
in sympathetic and sensory ganglia as well (145). A transient pharmacological ablation of the SNS
through injection of 6-hydroxydopamine or anti–nerve growth factor antibodies led to delayed
scrapie onset after peripheral inoculation (146).

In a study addressing the cells responsible for conveying prions to the gut-associated lymphoid
tissue after oral exposure, microfold cells (M cells) (147), specialized epithelial cells, were depleted
through application of a monoclonal antibody against receptor activator of nuclear factor κB
ligand (148). M cell depletion led to reduced prion uptake into FDCs without modifying FDC
status and prevented disease onset after oral prion exposure (148).

THERAPIES AGAINST PRION DISEASE IN HUMANS

To date, no clinical trial against prion diseases has succeeded. The low prevalence of prion diseases
inherently limits researchers’ ability to conduct double-blind, randomized, placebo-controlled,
multicenter trials on large patient groups. Rare diseases are less likely to be funded through
industry, and indeed, a systematic review found only one out of seven trials in CJD had an industrial
sponsor, in contrast to an overall average of three out of four industry-sponsored studies (149,
150).

Owing to the lack of a prion disease–specific disease rating scale, initial clinical studies were
performed using cognitive test batteries not specifically designed to address prion disease pheno-
types (27) or using survival as an outcome measure (151). Limited sample sizes and heterogeneous
endpoints lead to therapeutic interventions being published as case reports. Yet case reports are
intrinsically flawed by publication bias: An exceptional treatment success is more likely to be pub-
lished than a treatment failure. Extension of the endpoint-based primary outcome (i.e., survival)
in prion disease trials to neuropsychological, psychiatric, and other functional ranking systems
may improve power calculations for future trials (152).

PALLIATIVE CARE IN PRIONOPATHIES

With no effective therapy currently available against prion diseases, all medical care is essentially
supportive and palliative. Primarily, nursing efforts are intended to keep the patients safe (i.e., by
providing walking assistance through walkers and wheelchairs and—during the terminal stage—a
hospital bed with regular skin and mouth care and assistance with food intake) (153). Specifically,
pyrexia (i.e., broad variations in body temperature), which was suggested to be a common symp-
tom that, if left untreated, may lead to enhanced agitation, could be alleviated through the use
of fans and tepid sponge baths (154). Further distressing symptoms that need to be addressed
carefully are myoclonic jerking, heightened sensory sensitivity, shortness of breath, incontinence,
and constipation (154).

Strict preventive measures in agriculture and in human medicine have reduced the incidence
of vCJD to a near-complete disease extinction (155). Although the current World Health Orga-
nization Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies (156)
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do not formally deem blood or urine from non-vCJD diseased patients as infectious, some reports
suggest detectable infectivity of urine from sCJD patients and transmissibility of blood from hu-
man genetic prion disease patients to primates (157, 158). Hence, preventive actions have to be
followed by all personnel working with non-vCJD prionopathies as well, including but not lim-
ited to wearing appropriate protective gear and gaining knowledge about the relative infectivity of
different human tissues (159). On another note, as CJD patients need both palliative and mental
health care, the development of multidisciplinary guidelines can improve patient care through the
development of sophisticated treatment schemes (160).
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