
Creutzfeldt–Jakob disease (CJD) is a neurodegen-
erative illness caused by the misfolding of the host 
prion protein (PrP; BOX 1). Once formed, the initial 
pathological prion protein (PrPCJD) oligomers can act 
as seeds for further misfolding of normal cellular PrP 
(PrPC) in a cascade that results in neuronal death 
and the clinical manifestations of the disease, such 
as cognitive decline, hallucinations, incoordination 
and involuntary movements. The ‘prion paradigm’  
of PrP misfolding and seeded polymerization into 
disease-causing PrPCJD has provided the basis for 
understanding the molecular mechanism of the 
misfolding of other disease-associated host proteins 
(such as amyloid‑β (Aβ), α‑synuclein and tau) that  
are associated with a variety of neurodegenerative 
disorders1,2.

CJD and other rare prion diseases, such as varia-
bly protease-sensitive prionopathy, sporadic and fatal 
familial insomnias, Gerstmann–Sträussler–Scheinker 
syndrome and PrP systemic amyloidosis (TABLE 1), 
have a variety of clinical and pathological phenotypes;  

the host PrP genotype and the conformational pattern 
of the pathological PrPCJD partially contribute to the  
phenotype seen in a given patient3–8.

Early diagnosis of CJD remains challenging because 
the clinical manifestations of prion diseases at onset are 
variable and nonspecific. In patients presenting with 
rapidly evolving dementia characterized by progressive 
impairment in multiple cognitive domains, sporadic 
(sCJD) should be considered only after potentially treat-
able nonprion conditions — including autoimmune, 
neoplastic, paraneoplastic, and toxic or metabolic 
illnesses (such as heavy metal toxicity or Wernicke 
encephalopathy) — have been excluded9–11.

In the absence of a positive result for PrPCJD in the 
brain tissue, which is strictly required for a definitive 
diagnosis of CJD, only supporting investigations, such 
as typical diffusion patterns on MRI, periodic sharp and 
slow waves complexes (PSWCs) on EEG and the detec-
tion of 14‑3‑3 protein in the cerebrospinal fluid (CSF) 
are helpful in the diagnostic process, although they do 
not enable a definitive diagnosis to be made12. Recently, 
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PrPCJD

The infectious, often partially 
protease-resistant form of 
prion protein that is associated 
with Creutzfeldt–Jakob 
disease.

Prion paradigm
According to the prion 
paradigm, a misfolded, usually 
pathological, form of a host 
protein acts as an infectious 
agent by servingas a folding 
template, inducing the 
conversion of its normal 
counterpart into more of the 
misfolded form; the misfolded 
proteins then propagate within 
and/or between hosts to cause 
phenotypic changes, such as 
neurodegenerative disease.

14‑3‑3 protein
A protein biomarker of 
neuronal damage that is  
not disease-specific for 
Creutzfeldt–Jakob disease. 
However, elevated 
cerebrospinal fluid levels of 
14‑3‑3 can serve as a useful 
diagnostic aid for for 
distinguishing Creutzfeldt–
Jakob disease from other 
dementias.

PRNP methionine/valine 
(MV) polymorphism
The normal polymorphism at 
codon 129 of the human prion 
protein (PRNP) gene that 
codes for the prion protein.

however, marked improvements in the diagnostic pro-
cess have been provided by novel ultrasensitive seeding 
assays that are based on amplified detection of PrPCJD. 
These assays provide a basis for accurate antemortem 
diagnosis of prion diseases, reduction of iatrogenic 
prion transmission, and biomarker-based evaluation for 
future therapeutic trials13. Moreover, related tests might 
aid diagnosis of neurodegenerative diseases in which 
prion-like neurodegenerative processes are implicated. 
Here, we review the state of the art in the diagnosis of 
CJD and other human prion diseases in light of these 
new assays for PrPCJD seeding activity.

Diversity of CJD
CJD is the most common human prion disease. It is 
usually sporadic, but about 10–15% of cases are famil-
ial (genetic CJD (gCJD)); this form of CJD is inherited 
in an autosomal dominant fashion. In a small minority 
of patients, prion diseases are acquired via iatrogenic 
transmission (iCJD) or exposure to the bovine spongi-
form encephalopathy (BSE) agent (variant CJD (vCJD)). 
The number of iCJD cases has dramatically decreased 
over the past 15 years after elimination of therapeutic 
misadventures, and no new cases of vCJD have been 
reported since 2012, presumably because of measures 
taken to reduce the consumption of high-risk bovine 
tissues14,15.

Sporadic CJD
The mean age at onset of sCJD is around 70 years14. The 
main clinical characteristics of sCJD include rapidly pro-
gressive cognitive decline, myoclonus, cerebellar ataxia, 
visual symptoms, and pyramidal and extrapyramidal 
signs16. In some patients, psychiatric symptoms, behav-
ioural changes and/or insomnia are also present16,17. 
The main factors affecting the disease course are age at 
onset, sex, prion protein gene (PRNP) codon 129 geno
type, and PrPCJD glycotype. The time from diagnosis 
to death is substantially shorter in patients older than 
80 years (mean survival 3 months) than in those aged 
around 50 years (mean survival 7 months). Female 
patients live about 1 month longer than male patients18.  

Moreover, PRNP codon 129 genotype and PrPCJD glyco
type affect disease susceptibility, severity and prognosis, 
as described below.

PRNP Met/Val polymorphism. The PRNP methionine/
valine (MV) polymorphism at codon 129 can influence 
clinicopathological phenotypes and length of sur-
vival18,19. About 50% of the general population has codon 
129 heterozygosity (MV), probably because ancestral 
prion disease epidemics have favoured the MV genotype 
during the evolution of modern humans20,21. By contrast, 
more than 80% of patients with sCJD are homozygous 
for either methionine or valine, and the disease course 
in these patients is much shorter than in heterozygous 
patients17–19.

PrPCJD glycotype. Another factor that influences disease 
severity and survival time is the glycotype of PrPCJD that 
accumulates in the brain in CJD. Two major PrPCJD 
glycotypes — type 1 and type 2A — have been inter-
nationally validated for sCJD17,22 The glycotypes are 
distinguished mainly by the electrophoretic migration 
of the unglycosylated fragments: the unglycosylated 
PrPCJD type 1 fragment migrates at 19 kDa, whereas 
type 2A migrates at 21 kDa. These PrPCJD types are pre-
sumed to reflect differences in the abilities of distinct 
CJD strains or conformers to accommodate differen-
tially glycosylated PrP monomers into their multimeric 
assemblies22. The different sCJD glycotypes have prefer-
ential associations with codon 129 MV polymorphisms: 
MM genotypes have a high propensity to combine with 
type 1 PrPCJD glycotype (MM1), whereas VV and MV 
genotypes tend to be associated with type 2 PrPCJD (VV2 
and MV2, respectively). Overall, MM1, VV2, MV1 and 
MV2 groups comprise more than 90% of all sCJD cases, 
whereas MM2 and VV1 are rarely observed17,22 (TABLE 2). 
Thus, codon 129 genotype and PrPCJD type, together with 
age at disease onset and sex, act as prognostic factors 
in sCJD18.

Variant CJD
Phenotypically, vCJD is relatively homogeneous. The 
mean age at onset is 28 years (range 12–74 years), and 
the median survival after diagnosis is 14 months (range 
6–39 months)23. Clinical symptoms at onset include 
psychiatric, behavioural and/or sensory symptoms, 
which are followed by cognitive decline, cerebellar signs 
and involuntary movements as the disease progresses. 
MRI reveals high bilateral pulvinar signals that are dis-
tinct from those observed in sCJD15,23. The CSF level of 
14‑3‑3 is not a useful marker in vCJD, and the PSWC 
EEG pattern manifests only in the late stages of disease, 
if at all24. The presence of PrPCJD in the tonsil, detected 
by immunoblotting and immunohistochemistry, helps 
to distinguish vCJD from other prion diseases25 (FIG. 1).

A third PrPCJD glycotype, type 2B, is associated 
with vCJD but, unlike with sCJD, the overall profile of 
PrPCJD is dominated by diglycosylated PrP molecules. 
The vCJD infectious agent provides a key example of 
a prion strain’s propensity to affect only hosts with a 
specific polymorphism: all clinically affected patients 

Key points

•	Early and accurate diagnosis of Creutzfeldt–Jakob disease (CJD) is essential to avoid 
iatrogenic transmission and to distinguish CJD from potentially treatable dementias

•	Diagnosis of CJD in living patients is challenging, mainly because the disease 
phenotypes are highly heterogeneous, and detection of the misfolded protein in the 
brain tissue is often not feasible

•	Supportive investigations such as EEG, MRI and cerebrospinal fluid biomarkers have a 
relatively low diagnostic sensitivity and specificity in CJD

•	Diagnosis of CJD has been markedly improved by novel ultrasensitive seeding assays, 
such as real-time quaking-induced conversion (RT‑QuIC) and protein misfolding cyclic 
amplification (PMCA), which are based on amplified prion detection

•	RT‑QuIC is specific and highly sensitive for sporadic CJD, whereas PMCA is extremely 
sensitive for detecting variant CJD prions in biological fluids and in extraneural or 
lymphatic tissues

•	In the future, novel assays analogous to RT‑QuIC or PMCA might provide a protein- 
seeding-based diagnosis in other neurodegenerative diseases in which prion-like 
neurodegenerative processes are implicated

R E V I E W S

326 | JUNE 2016 | VOLUME 12	 www.nature.com/nrneurol

©
 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved. ©

 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved.



are MM at codon 129, except for a report in 2016 that 
described one affected patient with MV (http://www.
cjd.ed.ac.uk/). Although vCJD prions have been identi-
fied in the spleen and appendix in MV individuals who 
received blood or factor VIII plasma derivatives from 
donors who subsequently developed vCJD, these indi-
viduals have not, to date, developed clinical symptoms 
of vCJD26–28. Moreover, no reports of clinical vCJD in 
VV individuals have been observed to date. However, 
anonymous appendix screening of appendix tissue  
in the UK has shown that vCJD PrPCJD is present in ~1 in 
2,000 asymptomatic individuals independent of codon 
129 genotype29. Collectively, these findings raise public 
health concerns that MV and VV individuals could act 
as asymptomatic carriers and perpetuate prion infections 
among the population via blood or plasma donations30. 

In the UK, the costs of importing blood from abroad to 
prevent the potential spread of prion through blood or 
blood derivatives is enormous, and a simple and effective 
screening test is, therefore, urgently needed31.

In vivo diagnosis of sporadic CJD
Changes in cortical and subcortical grey matter detected 
by conventional fluid-attenuated inversion recovery 
(FLAIR) or diffusion-weighted MRI sequences, PSWCs 
seen on EEG, and detection of 14‑3‑3 protein in the CSF 
are helpful in distinguishing sCJD from other rapidly 
progressive dementias32–35. However, acute neuronal 
damage in other neurological diseases, such as enceph-
alitis, vascular disorders, malignancies (for example, 
primary CNS lymphoma, intravascular lymphoma or 
infiltrative diffuse astrocytosis) and metabolic disor-
ders, can occasionally cause biomarker changes similar 
to those seen in CJD9,36,37. Diagnostic accuracy for sCJD 
is increased by the combination of 14‑3‑3 protein posi-
tivity and elevated tau protein levels in the CSF, although 
tau has never been included in the international  
diagnostic criteria38.

The lack of a reliable intravital test for sCJD was a 
challenge for many years. Early evidence for prion 
infectivity of peripheral tissues and biological fluids 
was obtained from transmission studies in nonhuman 
primates and transgenic mice expressing humanized 
PrPCJD (REFS 39,40). These studies indicated that kidney, 
lung, eye, spleen, lymph nodes and blood are poten-
tially infectious, albeit with a relatively low efficiency. 
Accordingly, PrPCJD deposition was occasionally detected 
by immunoblotting and immunohistochemistry in 
the spleen, lymph nodes and muscles. However, sam-
ples from these tissues are difficult to obtain in living 
patients, and the chance of detecting PrPCJD from such 
samples is relatively low: sensitivity of immunoblotting 
and immunohistochemistry to detect PrPCJD is 55% in 
the spleen and 27–33% in the muscle, and the sensitivity 
of this technique to detect PrPCJD in the lymph nodes has 
not been determined41–44 (FIG. 1).

More recently, involvement of the olfactory pathway, 
including the olfactory neuroepithelium, was reported 
on the basis of findings in deceased individuals with 
sCJD and in a biopsy specimen of olfactory mucosa 
obtained from a patient with sCJD, suggesting that 
olfactory mucosa is potentially useful for the in vivo 
diagnosis of CJD45,46 (FIG. 1). Although the detection of 
PrPCJD by immunoblotting and immunohistochemis-
try is highly specific, the diagnostic sensitivity of this 
method is relatively low; moreover, biopsy of olfactory 
mucosa is too invasive a procedure for widespread 
use, leading to the dismissal of this method as a future  
diagnostic strategy46.

According to current guidelines, definitive diagno-
sis of CJD requires neuropathology or the detection of 
PrPCJD in brain tissue either by immunohistochemical 
staining or immunoblotting. Usually, such tissue is col-
lected postmortem, but it can also be obtained from 
brain biopsies. The rarity of the latter procedure means 
that most definitive diagnoses are made postmortem, in 
part because conventional immunochemical tests lack 

Box 1 | Structure and function of the cellular prion protein

The  normal cellular prion protein (PrPC) is a glycophosphatidylinositol-anchored 
glycoprotein with a largely α‑helical (magenta) C‑terminal domain and an intrinsically 
disordered N‑terminal domain that binds Cu2+ and Zn2+. Typically, PrPC is exposed on  
the cell surface, but it can also be located on the lumenal side of intracellular organelles 
or vesicles.

PrPC is expressed in several cell types, both in the nervous system and peripheral 
tissues, although it is most abundant in neurons. The vast majority of PrPC molecules are 
synthesized in the endoplasmic reticulum and Golgi apparatus as glycoproteins that  
are bound to cellular membranes by a glycophosphatidylinositol anchor. Typically, PrPC 
molecules follow the secretory pathway to the cell surface, where they are exposed to 
the extracellular milieu. PrPC can then be re‑internalized into endocytic vesicles and 
recycled to the cell surface. PrPC can also be cleaved internally at two different sites by 
endogenous proteases to generate N‑terminal and C‑terminal fragments.

Although it is clear that the conversion of PrPC to pathological forms underpins the 
prion diseases, describing an overarching physiological role for PrPC in healthy 
individuals has remained difficult. Manipulation of PrPC levels has been reported to 
influence a variety of cellular functions and to result in altered host phenotypes, 
including impairments in metal homeostasis, development, synaptic plasticity, circadian 
rhythm, and stress responses68–71. However, some of the reported PrPC knockout 
phenotypes might be attributed to flanking genes72. In prion diseases, most, if not all, of 
the α-helical structure PrPC is refolded to β sheets and loops concurrent with assembly 
into disease-associated PrP multimers, such as amyloid fibrils, with as yet unresolved 
tertiary and quaternary structures. Besides its involvement in prion diseases, one the 
more renowned pathophysiological roles of PrPC is mediation of some of the neurotoxic 
effects of amyloid–β oligomers in Alzheimer disease models71.

NMDA, N‑methyl-d‑aspartate.
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Functions of PrPC

• Cu2+ and Zn2+ binding/homeostasis
• Cellular signalling and regulation of ion
 channels and neuronal excitability
 -NMDA receptor modulation
• Cell adhesion (neurite outgrowth)
• Maintenance of peripheral nerve myelin
• Neuronal survival and differentiation
• Neuroprotection
 -N-terminal region protects from reactive
 oxygen species
 -Central region binds to stress-inducible
 protein 1
• Receptor for amyloid-β oligomers in
 Alzheimer disease, and possibly for other
 β-rich protein aggregates
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Protein misfolding cyclic 
amplification (PMCA)
A highly sensitive and specific 
in vitro prion amplification 
reaction in which a test sample 
is mixed with suitable sources 
of PrPC (usually brain 
homogenates) and subjected 
to cycles of sonication and rest; 
amplified protease-resistant, 
infectious prions are typically 
detected by western blot after 
proteinase K treatment.

RT‑QuIC
Real-time quaking-induced 
conversion (RT‑QuIC) is a highly 
sensitive and specific in vitro 
test for prion-associated 
seeding activity in which a  
test sample is mixed with 
recombinant PrPC in multiwell 
plates that are subjected to 
cycles of shaking and rest.  
As the reaction progresses, 
prion-seeded, but apparently 
non-infectious recombinant 
PrP amyloid fibrils are 
detected by enhanced 
fluorescence of an 
amyloid-sensitive dye.

sufficient sensitivity to detect the minute amounts of 
PrPCJD that are present in tissues other than the brain, 
including the CSF.

The development of an ultrasensitive ELISA in 
which PrPCJD detection is improved by a steel powder 
capture technique provides a promising alternative 
approach to conventional testing. This test detects 
very low concentrations of PrPCJD, with 10−10 dilutions 
of vCJD-affected brain giving positive results. This 
test has a sensitivity of 71% and a specificity of 100% 
for diagnosing vCJD from blood samples, but it failed 
to detect PrPCJD in the blood of patients with sCJD or 
other human prion diseases47,48.

Seeding assays for PrPCJD

Protein misfolding cyclic amplification. Considerable 
progress has been made in establishing more-sensitive 
tests for PrPCJD by exploiting its self-propagation activ-
ity. Following initial demonstrations that PrPCJD itself 
can induce the conversion of PrPC to a PrPCJD-like state 
in vitro49, highly sensitive PrPCJD amplification reactions 
known as protein misfolding cyclic amplification (PMCA) reac-
tions were developed50–53. PMCA assays take advantage 
of the fundamental replication mechanism of prions, 
namely, the prion-induced seeded conversion of PrPC 
into more prions54 (FIG. 2). Test samples are combined with 
homogenates of brain tissue or cells that contain PrPC, and 
are subjected to cycles of sonication and rest50–54. PrPCJD 
in the sample induces the conversion of PrPC into much 
greater quantities of PrPCJD, which can then be detected by 
immunoblotting or surround optical fibre immunoassay 
(SOFIA)43. SOFIA by itself is ~108-fold more sensitive 
than capture ELISA for detection of sCJD and vCJD in 
brain tissue. In experimental animal models, PMCA and 
SOFIA can be much more sensitive for infectivity than 
are bioassays, and can detect as little as 1010–1012-fold 
dilutions of sCJD and/or vCJD brain homogenate43.

The aforementioned studies suggested that, in prin-
ciple, diagnosis of CJD should be possible on the basis 
of samples that contain much lower levels of PrPCJD than 
are observed in brain tissue. Indeed, in a study that com-
bined PMCA with SOFIA detection, PrPCJD was detected 
in the CSF of all 10 patients with sCJD but none of the 
10 non-CJD controls43. PMCA with immunoblotting can 
also detect PrPCJD in the urine of patients with vCJD43,51. 
In one study, positive PMCA reactions were observed 
in 13 of 14 urine samples from patients with vCJD, but 
not in any samples from 224 non-CJD controls, giv-
ing an estimated sensitivity of 93% and a specificity 
of 100%51. As seen with the blood sample assay with 
PMCA followed by SOFIA43, however, PMCA followed 
by immunoblotting did not detect PrPCJD in the urine 
of patients with sCJD. Unfortunately, from a practical 
diagnostic perspective, the PMCA assays have typically 
been hindered by the following requirements: brain or 
cell homogenates as sources of PrPC substrate; techni-
cally challenging sonications; read-outs that are time- 
consuming and low-throughput (immunoblotting); and 
extended assay times (for example, 4–5 days in the case 
of the urine test for vCJD)51. Moreover, PMCA reactions, 
in faithfully duplicating prion propagation, generate 
large amounts of CJD infectivity.

RT‑QuIC. To address the practical shortcomings dis-
cussed above, researchers have pursued alternative 
methods for detecting PrPCJD-associated seeding activ-
ity. These collective efforts have culminated in real-time 
quaking-induced conversion (RT‑QuIC) assays55–65 (FIG. 2). 
Like PMCA, RT‑QuIC assays are based on prion-seeded 
conversion of PrPC into abnormal, self-propagating aggre-
gates. However, the RT‑QuIC products have structures 
that are somewhat different from bona fide PrPCJD, and 
have not caused any clinical manifestations of disease on 
intracerebral inoculation into rodents (B. Caughey et al., 

Table 1 | Human prion diseases: incidence, genetics and clinical characteristics

Disease Aetiology Overall 
prevalence

PRNP pathogenic 
mutations

Clinical features

CJD Sporadic 90% of all CJD None Cognitive decline, behavioural, visual, motor and ataxic 
dysfunctions, myoclonus and akinetic mutism

Genetic ~10% of all CJD Puntiform or octapeptide 
insertions

Usually similar to sporadic CJD

Iatrogenic Rare None Usually similar to sporadic CJD

Variant Rare None Psychiatric and sensory symptoms, ataxia, involuntary 
movements with a mean duration of more than 6 months

Fatal insomnia Sporadic Rare None Cognitive decline, ataxia, psychiatric signs, insomnia

Genetic Rare Asp178Asn in association 
with 129M 

Insomnia, dysautonomia, ataxia, myoclonus, epileptic 
seizures 

Variably protease- 
sensitive prionopathy

Sporadic Rare None Cognitive decline, psychiatric symptoms, ataxia

Gerstmann–Sträussler–
Scheinker syndrome

Genetic Rare Puntiform or octapeptide 
insertions

Progressive dementia, ataxia, extrapyramidal and 
pyramidal signs (Pro102Leu mutation might result in a 
phenotype similar to sporadic CJD)

PrP systemic 
amyloidosis

Genetic Three families Stop-codon mutation at 
codon 163 or 195

Sensory and/or sensorimotor autonomic neuropathy

CJD, Creutzfeldt–Jakob disease; M, methionine; PRNP, prion protein gene.
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unpublished work). RT‑QuIC reactions can be performed 
in 96‑well plates, and the prion-seeded products can be 
detected with fluorescence plate readers, using the amy-
loid-sensitive dye thioflavin T. RT‑QuIC assays are often 
as sensitive as PMCA, but have the advantages of using 
bacterially expressed recombinant PrPC as a substrate, 
easily replicable shaking and fluorescence as a read-out, 
all of which facilitate high-throughput analyses.

Several research groups have conducted large stud-
ies in which CSF samples collected from sCJD patients 
and controls were evaluated using RT‑QuIC assays55–61. 
Together, these studies comprise analyses of hundreds 
of sCJD cases and an even larger number of controls. 
Diagnostic sensitivities observed in these studies range 
from 77–97%, and specificities range from 99–100%55,56. 
These data provide strong evidence that RT‑QuIC analy
sis of CSF can serve as a highly accurate and practical 
antemortem diagnostic test for sCJD. The specificity 
values of <100% that have been reported in some of the 
aforementioned studies are attributed to rare patients 
who were PrPCJD-positive on RT‑QuIC reactions, but 
were not diagnosed clinically with a prion disease. It 
remains unclear whether these cases might represent 
actual false positives arising from prion-free individuals, 
or true positives whose prion infection was disguised 
clinically by other concurrent diseases.

The diagnostic validity of RT‑QuIC testing seems 
robust in all sCJD subtypes, and does not seem to be 
affected by the timing of lumbar puncture. It is unlikely, 
therefore, that samples tested early in the clinical phase 
of sCJD would be particularly prone to yield false- 
negative results56. However, a patient’s codon 129 PRNP 
genotype or PrPCJD glycotype might influence the perfor-
mance of the test56,59,60. Whether PrPCJD seeding activity 
can be detected in the CSF of healthy individuals carry-
ing PRNP mutations, or of those exposed to potentially 
prion-contaminated medical or surgical procedures, 
remains to be explored.

From a more technical perspective, the various lab-
oratories performing CSF analyses have each employed 
somewhat different RT‑QuIC assay protocols with 
respect to reaction buffer composition, temperature, 
shaking motion and speed, and recombinant PrPC sub-
strate. Given that the results reported by different groups 
are fairly similar, at least some variations in RT‑QuIC 
protocol can clearly be tolerated. The CJD-associated 
RT‑QuIC seeding activity in CSF specimens is stable 
under a variety of storage conditions58. However, blood 
contamination can interfere with the assay, so removal 
of erythrocytes within 3 days of collection has been rec-
ommended58. In our experience, the most demanding 
aspect of RT‑QuIC assays is the preparation of suitable 
recombinant PrPC substrate, that is, one that is readily 
convertible to amyloid in the presence of prion seeds, but 
is very slow to convert spontaneously in their absence. 
Recently, a new PrPC substrate (Syrian golden hamster 
residues 90–231) was described. This substrate, when 
combined with adjustments to RT‑QuIC reaction con-
ditions, improved the diagnostic sensitivity to ~96% 
without sacrificing specificity60. These conditions also 
markedly shortened assay times and allowed the detec-
tion of extremely dilute, subinfectious levels of PrPCJD in 
a matter of hours. However, more-extensive multicentre 
testing of these new protocols is warranted before their 
diagnostic performance can be fully established.

Detection of PrPCJD in the olfactory mucosa
On the basis of presences of PrPCJD in the olfactory 
neuroepithelium45, samples from the olfactory mucosa 
provide another promising strategy for antemortem 
diagnosis of CJD. Brushings from the olfactory mucosa 
can be collected by a simple, rapid and gentle brushing 
procedure (see Supplementary information S1 (video))61. 
The olfactory mucosa sampling procedure involves vis-
ualizing the nasal vault with a rigid, sheathed fibroscope 
and brushing the mucosal surface with a narrow swab. 

Table 2 | Codon 129 genotype and PrPCJD glycotype influence disease phenotype in CJD

PrPCJD 
glycotype

Overall 
occurrence 
of PrPCJD 
glycotypes (%)

Codon 129 
genotype

Occurrence 
in different 
subtypes (%)

Common clinical 
signs at onset

Survival 
(months)

Sensitivity of supportive tests (%)

EEG 
(PSWCs)12,23

MRI32,34 Protein 14‑3‑3 
(REFS 12,33)

Sporadic CJD

Type 1 70 MM 90 Cognitive or ataxic 4 73 70 91

MV 7 Cognitive or ataxic 5 70 70 86

VV 3 Cognitive 11 42 60 90

Type 2A 30 MM 15 Cognitive 12.5 44 60 79

MV 36 Ataxic 12 17 79 100

VV 49 Ataxic 6 13 77 100

Variant CJD

Type 2B 100 MM 100 Psychiatric or 
sensory

14 0* 90 50

MV <1‡ NA NA NA NA NA

VV 0 NA NA NA NA NA

CJD, Creutzfeldt–Jakob disease; M, methionine; NA, not applicable; PSWCs, periodic sharp and slow waves complexes; PrPCJD, protease-resistant prion protein; 
V, valine. *Detected only in the late stages of the disease. ‡One reported case.
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To maximize the likelihood of contacting the olfactory 
mucosa and olfactory sensory neurons, which contain 
PrPCJD, a series of three or four brushings is obtained 
from both nostrils, because respiratory mucosal surfaces 
adjacent to the olfactory mucosa seem to lack detectable 
amount of prion-seeding activity61,62.

When brushings of the olfactory mucosa were sub-
jected to RT‑QuIC analysis, levels of PrPCJD seeding 
activity that were orders of magnitude higher than those 
in the CSF were detected rapidly in most samples from 
patients with sCJD. To date, nasal brushings from a total 
of 43 patients with sCJD and 43 non-CJD controls have 
been assessed, and have indicated an overall diagnostic 
sensitivity of 97.5% and a specificity of 100%. This sensi-
tivity is superior to that achieved by testing CSF samples 
from the same patients (77%).

Despite the encouraging results, further evaluation 
of olfactory mucosa testing is needed to better estab-
lish its diagnostic performance and to determine how 
early in the course of CJD infection seeding activity can 
be detected. RT‑QuIC seeding activity has also been 
detected in olfactory mucosa samples from 10 patients 
with genetic prion disease attributed to E200K, V210I, 
V180I or P102L PRNP mutations, but much more work 

will be needed to determine the extent to which the nasal 
brushing approach is useful for monitoring disease pro-
gression in the many genetic prion diseases of humans 
(Bongianni, M., Zanusso, G. et al.,unpublished work). 
The results obtained to date suggest that RT‑QuIC 
testing of nasal brushings could become a viable alter-
native or a confirmatory adjunct to CSF testing for ante
mortem diagnosis of human prion diseases. In addition 
to its potential utility in antemortem testing, the nasal 
brushing approach might also be helpful for postmortem 
analyses to confirm or rule out sCJD diagnosis without 
the need for autopsy. However, unlike brain specimens 
from autopsies, postmortem olfactory mucosa samples 
would not provide information on the PrPCJD glycotype, 
the distribution of lesions, the pattern of PrP deposition, 
or associated pathologies, and cannot, therefore, fully 
replace neuropathological studies.

Finally, although most of the RT‑QuIC studies of 
human prion disease to date have focused on sCJD, other 
studies have shown that RT‑QuIC can also detect vCJD 
very sensitively in brain tissue or in a small amount of 
homogenized brain tissue diluted in plasma63. Moreover, 
through use of a recombinant PrPC substrate derived 
from bank voles, all 28 of the different prion strains seen 
in humans and animals that have been tested so far have 
been detectable by RT‑QuIC64. From a practical perspec-
tive, this finding means that a single assay can be used to 
detect most, if not all, prion diseases.

Conclusions
Preventive health measures have dramatically reduced 
the incidence of iatrogenic transmission of CJD and 
exposures to BSE-infected materials that have caused 
vCJD in humans. However, such measures do not apply 
to sCJD, which is likely to arise spontaneously. Thus, this 
most common form of CJD will persist as a source of 
prion infectivity and mortality.

RT‑QuIC assays of CSF and olfactory mucosa brush-
ings can provide sCJD diagnosis with a specificity and 
sensitivity of nearly 100% in less than a day. However, sam-
ples from a large group of patients with other diagnoses, 
including treatable, rapidly progressive dementias, should 
be tested to further confirm these promising initial results.

Brown and Farrell suggested that RT‑QuIC testing of 
nasal brushings and the CSF should be applicable to all 
patients admitted with symptoms of dementia or cere-
bellar signs; such a procedure would virtually eliminate 
the risk of iatrogenic CJD transmission13. These authors 
profiled three recent surgical patients who were given 
non-CJD diagnoses and were then operated on with 
instruments that had not been subjected to specialized 
prion sterilization13. Later diagnoses of CJD in these 
patients led to the realization that many patients who had 
undergone surgery with potentially CJD-contaminated 
instruments might have been at risk of iatrogenic expo-
sures. Total prevention of accidental prion exposure of 
instruments during surgery or endoscopy may not be 
feasible, because some patients might undergo surgery 
a few weeks or months before the clinical onset of CJD. 
Therefore, systematic prion inactivation on surgical 
instruments remains strongly recommended13.

Figure 1 | Tissue and body fluid samples for prion protein detection in patients  
with CJD. Diagnosis of the different forms of Creutzfeldt–Jakob disease (CJD) requires 
samples from different tissues. In genetic CJD, DNA sequencing of blood samples detects 
prion protein gene (PRNP) mutations or insertions. In sporadic CJD, CJD-specific 
misfolded prion protein (PrPCJD) detected in the brain biopsy samples provides a 
definitive diagnosis of the disease. Real-time quaking-induced conversion (RT‑QuIC) 
assay of the cerebrospinal fluid (CSF) and olfactory mucosa can demonstrate the 
presence of PrPCJD with a sensitivity and specificity of nearly 100%. In peripheral tissues, 
PrPCJD has occasionally been detected postmortem in muscle, spleen and lymph nodes by 
immunoblotting and/or immunohistochemistry. In variant CJD, PrPCJD can be detected in 
tonsil biopsies by immunoblotting and/or immunohistochemistry, and in blood and urine 
by ELISA and protein misfolding cyclic amplification (PMCA). Postmortem, PrPCJD has also 
been detected in muscle and lymporeticular tissues. *PrPCJD detected from postmortem 
samples by immunohistochemistry and immunoblotting.
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The robustness of the RT‑QuIC assay suggests that 
this test should be included as a key diagnostic criterion 
for sCJD. We anticipate that in most cases, the initial 
testing would involve analysis of a CSF sample. However, 
if a CSF sample is unavailable, or if initial RT‑QuIC 
testing of the CSF is negative, RT‑QuIC testing of an  
olfactory mucosa brushing is indicated.

Aggregation of misfolded proteins is also impli-
cated in other neurodegenerative disorders, such 
as Alzheimer disease (misfolded Aβ and tau) and 
Parkinson disease (α‑synuclein). In vitro amplification 

studies have shown that, like PrPCJD, these misfolded 
protein aggregates can seed polymerization of the nor-
mal protein isoforms via prion-like mechanisms of rep-
lication66. In addition, the olfactory bulb is known to be 
an early site of involvement in both Alzheimer disease 
and synucleinopathies, and anosmia is an early symp-
tom in synucleinopathies67. Thus, it seems plausible that 
the development of highly sensitive seeding assays of 
olfactory mucosa brushings, analogous to the RT‑QuIC 
test for prion diseases, might assist intravital diagnosis 
of other brain proteinopathies.

Figure 2 | Diagnostic testing for Creutzfeldt–Jakob disease: PMCA versus RT‑QuIC. The principles of protein 
misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT‑QuIC) are illustrated. In PMCA, 
the test sample is mixed with a suitable source of normal prion protein (PrPC), usually uninfected brain homogenate, 
and subjected to cycles of sonication and rest, typically for 48 h. Additional rounds of PMCA are performed by diluting 
products of the previous round into fresh brain homogenate, followed again by sonication cycles. The typical readout 
is the detection of any prion-seeded, protease-resistant PrP reaction products by digestion with proteinase K (to 
eliminate any remaining PrPC substrate in the uninfected brain homogenate) and western blotting. The western blot 
shows that the number of rounds required to generate a detectable band correlates inversely with the prion 
concentration in the test sample. In the example shown, reactions were seeded with serial 10‑fold dilutions of brain 
homogenate from an individual with prion disease. In RT‑QuIC, the test sample is mixed with recombinant PrPC in 
multiwell plates and subjected to cycles of shaking and rest. As the reaction progresses, prion-seeded recombinant 
PrP amyloid fibrils are detected by the enhanced fluorescence of thioflavin T (ThT), an amyloid-sensitive dye. The 
graph provided shows the cumulative ThT fluorescence from eight replicate wells seeded with serial 10‑fold dilutions 
of prion brain homogenate. The stepwise increases in fluorescence are due to rapid growth of prion-seeded amyloid 
fibrils in individual wells after different lag phases, which is often more evident in reactions seeded with extreme 
dilutions of prion-containing samples. Permission obtained from Macmillan Publishers Ltd © Morales, R. et al.  
Nat. Protoc. 7, 1397–1409 (2012). GPI, glycophosphatidylinositol; PrPSc, scrapie prion protein.
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Advanced tests for early and accurate diagnosis of Creutzfeldt–Jakob 
disease
Gianluigi Zanusso, Salvatore Monaco, Maurizio Pocchiari and Byron Caughey
Nature Reviews Neurology 12, 325–333 (2016)

In the version of this article initially published online and in print, the Figure 2 erroneously depicted recombinant prion 
protein with attached glycans, and Table 2 listed an erroneous glycotype for sporadic Creutzfeldt–Jakob disease. The 
errors have been corrected for the PDF and HTML versions of the article.
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